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The finite difference boundary value method for obtaining eigenvalues and eigen- 
functions of the one-dimensional Schroedinger equation is discussed. The method is 
noniterative and may be applied to one-dimensional problems on (- m, m) or to the 
radial equation on (0, m). A computer program which computes the eigenvalues and 
any desired matrix elements involving the eigenfunctions is available from Quantum 
Chemistry Program Exchange. 

For a few potential energy functions the one-dimensional Schroedinger equation 
can be solved analytically [l-6]; however, in most cases a numerical method 
must be used or one must make rough approximations. The numerical methods 
may generally be classified as expansion in a basis-set [7-9, 10, 1 l] and numerical 
integration. The relative advantages and disadvantages of the basis-set and 
numerical-integration types of solution are well known. The numerical integration 
method is generally applied by treating the eigenvalue equation as an initial 
value problem. The method of inward and outward integrations with matching 
and an iterative procedure to find the eigenvalue is commonly used. The program 
of Cooley [12] as modified by Zare and Cashion [13-161 is such a program which 
is in wide use for applications to diatomic molecule vibrational problems. Usually 
on the order of 1000 points are used in the integration grid. The same numerical 
integration method is also in very wide use for solving the radial equation in the 
Hartree-Fock problem for atoms [17-211. Below we discuss a noniterative tech- 
nique for solving the one-dimensional eigenvalue problem. This is based on treating 
the problems as a boundary-value problem. In addition to the advantage of being 
noniterative, it has the advantage that it can easily be applied to multidimensional 
problems. In fact, the method has been applied successfully to many multi- 
dimensional eigenvalue problems [22-281. However, the method also has advan- 
tages in some cases for one-dimensional problems. Some applications of the 
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boundary-value method to one-dimensional problems have been made previously 
[29-321. The version of the boundary-value method described below for one- 
dimensional problems is based on the careful applications of the method to 
multi-dimensional problems by Winter, McKay, and coworkers [25,27,28]. This 
version has already been applied to some practical problems [33]. A program 
which performs calculations by this method has been submitted to Quantum 
Chemistry Program Exchange [34]. 

METHOD 

The Schroedinger equation is 

fw) VW) = V(R) + Jml hm = 4m9 (1) 

where (letting fi = 1) 

T(R) = - ( l/2/&)(@/&?), (2) 

V(R) is the potential energy (including the centrifugal potential for a radial equa- 
tion problem), and p is the mass or reduced mass. Equation (1) must be solved 
with the boundary conditions 

where R, = - cc for a real one-dimensional problem and R, = 0 for a radial 
equation. The system of Eqs. (2)-(4) is treated as a boundary-value problem. 
For R, small enough and R, large enough a good approximation to the boundary 
conditions is that &(R,) = &(R,.) = 0. The equation is then solved by making 
the finite difference approximation. Although we could use high order difference 
formulas we will consider the 3-point difference formula [35]. We find that suffi- 
ciently accurate eigenfunctions could be obtained by using the 3-point difference 
formula and a large number of grid points or extrapolation to a small step size 
or both. Further, the higher order difference formulas can be used without extra 
assumptions only in the interior of the grid point region for a boundary value 
problem and extra testing is required to find out the effects of the special approxi- 
mations which must be used near the boundary. Consider a set of N mesh points 
(or grid points) Rib (with i = 1,2,..., N) evenly spaced with Rlh = R, + h and 
RNh = R, - h. Then the step size h between mesh points is (RTh - Rsh)/(N + 1). 
Let 
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and let & be the approximation to 4ih obtained by making the finite difference 
approximation [35] 

s 
- ’ (4i-1,k - 2$i,k + +i+l,J* 6R2 R=R, = h2 (6) 

In this approximation the differential equation and its boundary conditions 
reduce to a set of linear equations for the values of the eigenfunction at the mesh 
points. These equations can be written in matrix form as 

where 

Fk = &[-W/4 + &I + 1/p.[&,j-,U - &I) + &.j+dl - &)I, 
Uii = -2h2V(Rih), 

and 
ck = - TV (Xkh/2h2), --f 

&s(R) = tz &‘@jh). 

(7) 

(8) 

(9) 

(10) 

(11) 

The limit in (11) must be taken including only grids which have a grid point Rjh 
at R. Further, each member of the sequence whose limit is &(R) has a different j 
such that Rjh = R. The eigenvalue Eq. (7) can be solved by a standard subroutine 
for eigenvalues of real, symmetric matrices. Here the Givens-Househoulder 
method is used [36]. The extrapolation in (10) and (11) can be carried out using 
Richardson’s h2-extrapolation [37]. The various extrapolants are arranged in a 
Neville table [38] and the last element in the table is the most accurate approxima- 
tion to Ed . The other elements of the table are useful in giving an estimate of the 
accuracy. The Richardson extrapolation procedure is well known to many numeri- 
cal analysts but for completeness is reviewed, along with the method of display 
of the results in a Neville table, in Appendix 1. 

To be consistent with O(h2) error in the 3-point approximation to the second 
derivative in the differential equation, integrals over the approximate wavefunctions 
should be computed using the quadrature formula with the same order of accuracy, 
namely, the trapiezoidal rule [39]. Thus the normalization condition is 

h ‘$ 1 cjn I2 = 1. 
i=l 

(12) 
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The matrix element 

is determined as 

where 

TRUHLAR 

s dR h*(R) f(R) h(R) 

The limit in (14) is accomplished by Richardson extrapolation. 

(13) 

(14) 

(15) 

EXAMPLFB AND DISCUSSION 

The following example is intended to show that the method can be used accu- 
rately and conveniently. The example is in Hartree atomic units [40] except that 
Tables I-III are in cm-l. The potential is the Levine potential [41] for the X1 C+ 
state of CO. 

V(R) = D,[s(R)12 - D, 

s(R) = 1.0 - (RJR) exp[--a(Rp - Rep)], 

where D, = 0.41321, R, = 2.13207, a = 0.2069074, and p = 1.869. D, is the 
diatomic potential energy well depth, R, is the position of the minimum in the 
potential energy well, and a is Levine’s parameter /3. These parameters are obtained 
from the data in Ref. [42]. The reduced mass is taken as 12510.63. The vibrational 
wavefunctions are numbered u = 1,2,..., instead of the usual 0, l,... . By perform- 
ing trial calculations with very small R, and very large R, we estimated that to 
have &(RJ < lo-lo and &,(RT) < lo-lo would require R, = 1.5 and R, = 3.2. 
We will consider two different choices of boundary conditions: (A) R, = 1.15, 
R, = 4.0; (B) R, = 1.05, R, = 3.7. Neville tables for the eigenfunctions with v 
equals 1, 3, and 9 for these examples are given in Tables I-III. The tables show the 
following expected significant features: (a) the final extrapolated eigenvalue is 
independent of the exact choice A or B of where the boundary condition is imposed; 
(b) each succeeding column converges faster than the previous one; (c) high 
accuracy can be achieved either by a high order extrapolation of several runs 
with small it or a low order extrapolation of a few runs with large n; (d) the 
accuracy of a given number is about equal to its difference from the number just 
above it in the Neville table. 

The finite difference boundary value method is most accurate for v = 1. In 
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this case accuracy of much better than 0.002 cm-’ can be achieved by making 
calculations with 110, 130, and 150 points and then making a h4-extrapolation. 
Accuracy of much better than 0.02 cm-l for the same problem can be achieved 
by making calculations with 50 and 70 points and then making an @extrapolation. 
Such calculations are very easy and fast. For the higher u good accuracy can be 
achieved by using finer grids. 

Two sample Neville tables for the matrix element (v = 6 / R / v = 3) are given 
in Table IV. This is a typical example, again showing the high accuracy. High 
accuracy can also easily be obtained for even more difficult matrix elements 
involving higher du. 

TABLE IV 

Neville tables for the matrix element (v = 6 1 lO’(R - &)I v = 3) computed 
with boundary conditions imposed according to plans A and Ba 

N h 

(A) 600 0.00474 9.435972 
9.106346 

800 0.00356 9.291761 9.106459 
9.106418 

1000 0.00285 9.225038 

@I 500 0.00529 9.516660 
9.106329 

725 0.00365 9.301492 9.106469 
9.106430 

950 0.00287 9.220036 

a The matrix element is in bohrs. 

CONCLUSION 

The finite difference boundary value method is a rapid, convenient method for 
obtaining the eigenvalues of and matrix elements involving the eigenfunctions of 
the radial Schroedinger equation. 

APPENDIX 1: RICHARDSON EXTRAPOLATION PROCEDURE AND USE OF THE 
NEVILLE TABLE 

Let A&) be a numerically computed quantity corresponding to step size hi 
and let A, be the exact result (corresponding to the solution of the differential 
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equation rather than the difference equations). The extrapolation procedure 
consists in obtaining solutions at n different stepsizes and approximating A(@ 

n-1 
A(hi) = c l&h=. 

i=O 
(Al) 

The fact that only even terms appear in (Al) is a consequence of the application 
of central differences [Eq. (6)] to this boundary value problem [37]. We then solve 
the n simultaneous linear Eqs. (Al) for the set of IZ values of Ai . This is exactly 
equivalent to performing Aitken inverse interpolation [43] on the sequence of 
A(&) and interpolating to the point h = 0. Note that since h = 0 is outside the 
range of hi for which A(hi) is available, this is technically an extrapolation. It is 
most convenient to arrange the Aitken inverse interpolation calculation according 
to the suggestion of Neville [38]. This yields a “Neville Table” in which each 
element has an obvious and useful interpretation. For example, in part A of 
Table II, 5176.452 is the result of the calculation with 70 points, 5353.191 is from 
an h2-extrapolation using the 70- and 90-point calculations, 5350.423 is the result 
of an h*-extrapolation using the 70-, 90-, and llO-point calculations. Finally, 
the furthest right number in the table is the result of an h’*-extrapolation using all 
the calculations. 

This extrapolation process, with a given value of n, is called Richardson’s 
h2(‘+-extrapolation. 
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